
Click to edit Master title style 

QARTOD in Practice 

Presented by Luke Campbell 



Lessons Learned 



Lessons Learned 

•QARTOD is running in real-time for the Chesapeake 

Bay Interpretive Buoy System 

• Some degree of test coverage for all scientific 

parameters 

• Strong coverage for: 

•Currents 

• Temperature & Salinity 

• Dissolved Oxygen 

3 



Lessons Learned 

•Configuring Test Constraints is not trivial: 

•Consistent Units between configuration and data 

• time-varying parameters 

•data model schema 

•How are deployments treated? 

•Maintenance vs recovered vs telemetered 

 

 

• How to deal with missing values 

• Types of missing data 

4 



The CBIBS Solution 



The CBIBS Solution 

•All of our observation data is stored in a PostGIS 

database. 

6 



The CBIBS Solution 

•We run all QC tests on all recent observations every 

hour, or more frequent (schedule is dependent on 

which platform) 

 

•We use google docs to configure QC parameters for 

all stations and parameters: 

• Station ID 

• Parameter Name 

• Units 

• configuration variable (min, max, rate of change, 

etc.) 

7 



The CBIBS Solution 

• Test runs overlap 

 

•We do infrequent manual historical QC runs if we get 

delayed data or make corrections to a process. 

• For example, we identified a bug in our processing 

of salinity, after regenerating all of the historical 

salinity values, we re-ran QC for all historical salinity 

observations 

 

•Missing values are only identified in the cases for 

instrument failures 

• All QC default to 2 for "Not Evaluated" on initialization 

8 



The CBIBS Solution 

More on the DMAC side: 

•We expose interfaces into the database for data 

access 

• THREDDS 

• Public API 

• API shows only data that are not marked as 3 or 

4 (suspect or bad) 

9 



The CBIBS Solution 

It works! 

10 



QARTOD and netCDF 



QARTOD and netCDF 

CF provides guidance for storing flags in netCDF files in 

§3.5. 

 

 

The attributes flag_values, flag_masks and 

flag_meanings are intended to make variables that 

contain flag values self describing. Status codes and 

Boolean (binary) condition flags may be expressed 
with different combinations of flag_values and 

flag_masks attribute definitions. 

12 



QARTOD and netCDF 

•Flags as encoded masks 

•Flags as values 

 

•Why we went with values 

 

•Drawbacks 

•Adds several variables to every dataset 

•Pros 

•Clear 

•Self-describing 

•Doesn't require additional programming to use 

•Bit twiddling sucks & 0x00F8300 

13 



QARTOD and netCDF 

14 



QARTOD and netCDF 

•Further Considerations: 

 

•To include test values in variable attributes 

 

•QC Test Runtime 

15 



GliderDAC 



GliderDAC 

Coming soon to GliderDAC is automated QC 

 

Manual for QC of Glider Data 

 

Challenges: 

 

•Gradients over pressure AND time 

•Accurately separating profiles (yo) 

17 

http://gliders.ioos.us/static/pdf/Manualf_for_QC_of_Glider_Data_05_09_16.docx
http://gliders.ioos.us/static/pdf/Manualf_for_QC_of_Glider_Data_05_09_16.docx
http://gliders.ioos.us/static/pdf/Manualf_for_QC_of_Glider_Data_05_09_16.docx


GliderDAC 

Challenges specific to GliderDAC 

 

• Preserving data provider QC 

•Where to store QC alongside Provider Data 

•We have a policy not to modify any 

uploaded datasets directly. 

•We need to combine our QC results in the 

final dataset published 

18 



Community Library 



Community Library 

The core logic of our QARTOD implementation is 

available online at: 

 

https://github.com/ioos/qartod/ 

 

It would be good to see this used as the reference 

implementation to increase consistent usage across 

projects and improve overall QC coverage across 

users. 

 

We're working on adding a command line tool for 

this library to apply QC to local files. 

20 

https://github.com/ioos/qartod/
https://github.com/ioos/qartod/
https://github.com/ioos/qartod/

